Copied to
clipboard

G = Dic32order 144 = 24·32

Direct product of Dic3 and Dic3

direct product, metabelian, supersoluble, monomial, A-group

Aliases: Dic32, C322C42, C62.1C22, C22.3S32, (C2×C6).8D6, C6.18(C4×S3), C3⋊Dic31C4, C31(C4×Dic3), (C3×Dic3)⋊2C4, C6.3(C2×Dic3), C2.2(S3×Dic3), (C6×Dic3).5C2, (C2×Dic3).4S3, C2.2(C6.D6), (C3×C6).12(C2×C4), (C2×C3⋊Dic3).1C2, SmallGroup(144,63)

Series: Derived Chief Lower central Upper central

C1C32 — Dic32
C1C3C32C3×C6C62C6×Dic3 — Dic32
C32 — Dic32
C1C22

Generators and relations for Dic32
 G = < a,b,c,d | a6=c6=1, b2=a3, d2=c3, bab-1=a-1, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >

Subgroups: 160 in 68 conjugacy classes, 36 normal (8 characteristic)
C1, C2, C2, C3, C3, C4, C22, C6, C6, C2×C4, C32, Dic3, Dic3, C12, C2×C6, C2×C6, C42, C3×C6, C3×C6, C2×Dic3, C2×Dic3, C2×C12, C3×Dic3, C3⋊Dic3, C62, C4×Dic3, C6×Dic3, C2×C3⋊Dic3, Dic32
Quotients: C1, C2, C4, C22, S3, C2×C4, Dic3, D6, C42, C4×S3, C2×Dic3, S32, C4×Dic3, S3×Dic3, C6.D6, Dic32

Smallest permutation representation of Dic32
On 48 points
Generators in S48
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 28 4 25)(2 27 5 30)(3 26 6 29)(7 32 10 35)(8 31 11 34)(9 36 12 33)(13 38 16 41)(14 37 17 40)(15 42 18 39)(19 44 22 47)(20 43 23 46)(21 48 24 45)
(1 7 5 11 3 9)(2 8 6 12 4 10)(13 23 15 19 17 21)(14 24 16 20 18 22)(25 35 27 31 29 33)(26 36 28 32 30 34)(37 45 41 43 39 47)(38 46 42 44 40 48)
(1 23 11 17)(2 24 12 18)(3 19 7 13)(4 20 8 14)(5 21 9 15)(6 22 10 16)(25 43 31 37)(26 44 32 38)(27 45 33 39)(28 46 34 40)(29 47 35 41)(30 48 36 42)

G:=sub<Sym(48)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,28,4,25)(2,27,5,30)(3,26,6,29)(7,32,10,35)(8,31,11,34)(9,36,12,33)(13,38,16,41)(14,37,17,40)(15,42,18,39)(19,44,22,47)(20,43,23,46)(21,48,24,45), (1,7,5,11,3,9)(2,8,6,12,4,10)(13,23,15,19,17,21)(14,24,16,20,18,22)(25,35,27,31,29,33)(26,36,28,32,30,34)(37,45,41,43,39,47)(38,46,42,44,40,48), (1,23,11,17)(2,24,12,18)(3,19,7,13)(4,20,8,14)(5,21,9,15)(6,22,10,16)(25,43,31,37)(26,44,32,38)(27,45,33,39)(28,46,34,40)(29,47,35,41)(30,48,36,42)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,28,4,25)(2,27,5,30)(3,26,6,29)(7,32,10,35)(8,31,11,34)(9,36,12,33)(13,38,16,41)(14,37,17,40)(15,42,18,39)(19,44,22,47)(20,43,23,46)(21,48,24,45), (1,7,5,11,3,9)(2,8,6,12,4,10)(13,23,15,19,17,21)(14,24,16,20,18,22)(25,35,27,31,29,33)(26,36,28,32,30,34)(37,45,41,43,39,47)(38,46,42,44,40,48), (1,23,11,17)(2,24,12,18)(3,19,7,13)(4,20,8,14)(5,21,9,15)(6,22,10,16)(25,43,31,37)(26,44,32,38)(27,45,33,39)(28,46,34,40)(29,47,35,41)(30,48,36,42) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,28,4,25),(2,27,5,30),(3,26,6,29),(7,32,10,35),(8,31,11,34),(9,36,12,33),(13,38,16,41),(14,37,17,40),(15,42,18,39),(19,44,22,47),(20,43,23,46),(21,48,24,45)], [(1,7,5,11,3,9),(2,8,6,12,4,10),(13,23,15,19,17,21),(14,24,16,20,18,22),(25,35,27,31,29,33),(26,36,28,32,30,34),(37,45,41,43,39,47),(38,46,42,44,40,48)], [(1,23,11,17),(2,24,12,18),(3,19,7,13),(4,20,8,14),(5,21,9,15),(6,22,10,16),(25,43,31,37),(26,44,32,38),(27,45,33,39),(28,46,34,40),(29,47,35,41),(30,48,36,42)]])

Dic32 is a maximal subgroup of
Dic3≀C2  C62.6C23  Dic35Dic6  C62.8C23  C62.9C23  C62.10C23  C62.11C23  C62.13C23  Dic36Dic6  Dic3.Dic6  C62.16C23  C62.17C23  C62.18C23  C62.19C23  C62.28C23  C62.31C23  C4×S3×Dic3  C62.47C23  C62.48C23  C62.49C23  C62.51C23  C4×C6.D6  C62.74C23  C62.77C23  C62.83C23  C62.94C23  C62.95C23  C62.97C23  C62.98C23  C62.99C23  C62.101C23  C62.115C23  C62.121C23  He3⋊C42  C336C42
Dic32 is a maximal quotient of
C6.(S3×C8)  C3⋊C8⋊Dic3  C2.Dic32  C62.6Q8  He3⋊C42  C336C42

36 conjugacy classes

class 1 2A2B2C3A3B3C4A···4H4I4J4K4L6A···6F6G6H6I12A···12H
order12223334···444446···666612···12
size11112243···399992···24446···6

36 irreducible representations

dim111112222444
type++++-++-+
imageC1C2C2C4C4S3Dic3D6C4×S3S32S3×Dic3C6.D6
kernelDic32C6×Dic3C2×C3⋊Dic3C3×Dic3C3⋊Dic3C2×Dic3Dic3C2×C6C6C22C2C2
# reps121842428121

Matrix representation of Dic32 in GL6(𝔽13)

010000
1210000
000100
0012100
000010
000001
,
080000
800000
000800
008000
000010
000001
,
1200000
0120000
001000
000100
00001212
000010
,
500000
050000
0012000
0001200
000010
00001212

G:=sub<GL(6,GF(13))| [0,12,0,0,0,0,1,1,0,0,0,0,0,0,0,12,0,0,0,0,1,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,8,0,0,0,0,8,0,0,0,0,0,0,0,0,8,0,0,0,0,8,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,1,0,0,0,0,12,0],[5,0,0,0,0,0,0,5,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,1,12,0,0,0,0,0,12] >;

Dic32 in GAP, Magma, Sage, TeX

{\rm Dic}_3^2
% in TeX

G:=Group("Dic3^2");
// GroupNames label

G:=SmallGroup(144,63);
// by ID

G=gap.SmallGroup(144,63);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-3,-3,48,31,490,3461]);
// Polycyclic

G:=Group<a,b,c,d|a^6=c^6=1,b^2=a^3,d^2=c^3,b*a*b^-1=a^-1,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations

׿
×
𝔽